Disparity-tuning characteristics of neuronal responses to dynamic random-dot stereograms in macaque visual area V4.
نویسندگان
چکیده
Stereo processing begins in the striate cortex and involves several extrastriate visual areas. We quantitatively analyzed the disparity-tuning characteristics of neurons in area V4 of awake, fixating monkeys. Approximately half of the analyzed V4 cells were tuned for horizontal binocular disparities embedded in dynamic random-dot stereograms (RDSs). Their response preferences were strongly biased for crossed disparities. To characterize the disparity-tuning profile, we fitted a Gabor function to the disparity-tuning data. The distribution of V4 cells showed a single dense cluster in a joint parameter space of the center and the phase parameters of the fitted Gabor function; most V4 neurons were maximally sensitive to fine stereoscopic depth increments near zero disparity. Comparing single-cell responses with background multiunit responses at the same sites showed that disparity-sensitive cells were clustered within V4 and that nearby cells possessed similar preferred disparities. Consistent with a recent report by Hegdé and Van Essen, the disparity tuning for an RDS drastically differed from that for a solid-figure stereogram (SFS). Disparity-tuning curves were generally broader for SFSs than for RDSs, and there was no correlation between the fitted Gabor functions' amplitudes, widths, or peaks for the two types of stereograms. The differences were partially attributable to shifts in the monocular images of an SFS. Our results suggest that the representation of stereoscopic depth in V4 is suited for detecting fine structural features protruding from a background. The representation is not generic and differs when the stimulus is broad-band noise or a solid figure.
منابع مشابه
Stimulus dependence of disparity coding in primate visual area V4.
Disparity tuning in visual cortex has been shown using a variety of stimulus types that contain stereoscopic depth cues. It is not known whether different stimuli yield similar disparity tuning curves. We studied whether cells in visual area V4 of the macaque show similar disparity tuning profiles when the same set of disparity values were tested using bars or dynamic random dot stereograms, wh...
متن کاملQuantitative analysis of the responses of V1 neurons to horizontal disparity in dynamic random-dot stereograms.
Horizontal disparity tuning for dynamic random-dot stereograms was investigated for a large population of neurons (n = 787) in V1 of the awake macaque. Disparity sensitivity was quantified using a measure of the discriminability of the maximum and minimum points on the disparity tuning curve. This measure and others revealed a continuum of selectivity rather than separate populations of dispari...
متن کاملRejection of false matches for binocular correspondence in macaque visual cortical area V4.
A plane lying in depth is vividly perceived by viewing a random-dot stereogram (RDS) with a slight binocular disparity. Perception of a plane-in-depth is lost by reversing the contrast of dots seen by one of the eyes to generate an anticorrelated RDS. From a computational perspective, the visual system cannot find a globally consistent solution for matching the left and right eye images of an a...
متن کاملRepresentation of stereoscopic depth based on relative disparity in macaque area V4.
Stereoscopic vision is characterized by greater visual acuity when a background feature serves as a reference. When a reference is present, the perceived depth of an object is predominantly dependent on this reference. Neural representations of stereoscopic depth are expected to have a relative frame of reference. The conversion of absolute disparity encoded in area V1 to relative disparity beg...
متن کاملCoding of horizontal disparity and velocity by MT neurons in the alert macaque.
We performed the first large-scale (n = 501), quantitative study of horizontal disparity tuning in the middle temporal (MT) visual area of alert, fixating macaque monkeys. Using random-dot stereograms, we quantified the direction tuning, speed tuning, horizontal disparity tuning, and size tuning of each neuron. The vast majority (93%) of MT neurons were significantly tuned for horizontal dispar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 94 4 شماره
صفحات -
تاریخ انتشار 2005